Estimation of Monthly Volatility: An Empirical Comparison of Realized Volatility, GARCH and ACD-ICV Methods
نویسندگان
چکیده
We apply the ACD-ICV method proposed by Tse and Yang (2011) for the estimation of intraday volatility to estimate monthly volatility, and empirically compare this method against the realized volatility (RV) and generalized autoregressive conditional heteroskedasticity (GARCH) methods. Our Monte Carlo results show that the ACD-ICV method performs well against the other two methods. Evidence on the Chicago Board Options Exchange volatility index (VIX) shows that it predicts the ACD-ICV volatility estimates better than it predicts the RV estimates. While the RV method is popular for the estimation of monthly volatility, its performance is inferior to the GARCH method. JEL Codes: C410, G120
منابع مشابه
Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملModeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کاملRealized Volatility and Modeling Stock Returns as a Mixture of Normal Random Variables: the GARCH-Skew-t Model
This paper provides a new empirical guidance for modeling a skewed and fat-tailed error distribution underlying the traditional GARCH models for equity returns based on empirical findings on Realized Volatility (RV), constructed from the summation of higher-frequency squared (demeaned) returns. Based on an 80-year sample of U.S. daily stock market returns, I find that the distribution of monthl...
متن کاملForecasting realized volatility: a review
Modeling financial volatility is an important part of empirical finance. This paper provides a literature review of the most relevant volatility models, with a particular focus on forecasting models. We firstly discuss the empirical foundations of different kinds of volatility. The paper, then, analyses the non-parametric measure of volatility, named realized variance, and its empirical applica...
متن کاملRealized GARCH: A Joint Model for Returns and Realized Measures of Volatility∗
We introduce a new framework, Realized GARCH, for the joint modeling of returns and realized measures of volatility. A key feature is a measurement equation that relates the realized measure to the conditional variance of returns. The measurement equation facilitates a simple modeling of the dependence between returns and future volatility. Realized GARCH models with a linear or log-linear spec...
متن کامل